Cadmium availability and uptake in four different cocoa production systems in Bolivia

A. Gramlich¹, S. Tandy¹, C. Andres², J. Chincheros³, L. Armengot², M. Schneider², R. Schulin¹

¹ETH Zurich, Institute of Terrestrial Ecosystems, Zurich, CH
²Research Institute of Organic Agriculture (FiBL), Frick, CH
³Universidad Mayor de San Andrés, Laboratorio de Calidad Ambiental, La Paz Bolivia

Lima Peru

ISRIC 16.11.2017
Background and motivation

Relevance

Elevated Cd concentrations were found in cocoa beans from many countries in Latin America.

Problem identification

Identify sources.
Identify factors influencing Cd availability in soils and uptake.

Approach

Investigation of soil, variety and management effects on Cd availability in soil and uptake in cocoa plants in a long-term field trial in Sara Ana (Bolivia), where cocoa performance in monocultures and agroforestry systems under conventional as well as organic management is compared.
Methods

Site description

- Bolivia, Alto Beni, alluvial terraces of the river Alto Beni, transition zone Andean plateau and Amazon
- 400 masl, precipitation: 1’550 mm, winter dry
- 20 years of fallow land before set up of trial

Trial layout

- Long-term trial, set up in 2008-2009
- Fully replicated 4 times
- Gross plot: 48 m x 48 m (144 cocoa trees), net plot 24 m x 24 m (36 cocoa trees)
- 12 cocoa cultivars: 4 local selected clones, 4 international clones and 4 hybrids of int.clones
Methods

Production systems

<table>
<thead>
<tr>
<th>Management</th>
<th>Monoculture</th>
<th>Agroforestry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shade tree canopy</td>
<td>- banana trees in establishment phase</td>
<td>42 trees plot(^1) (227 trees ha(^{-1})): legumes, timber, fruit trees, etc. Banana followed by plantain</td>
</tr>
<tr>
<td>Fertilization</td>
<td>Mineral fertilizer. Occasional foliar sprays</td>
<td>Compost. 50% of monoculture dose. Occasional foliar sprays</td>
</tr>
<tr>
<td>Weed control</td>
<td>Herbicides (4-5 year(^{-1})) Manual weeding, brushcutters</td>
<td>Perennial legume cover (Neonotonia wightii) Manual weeding, brushcutters</td>
</tr>
<tr>
<td>Pest and disease control</td>
<td>Manual control, occasional insecticides against leaf cutting ants</td>
<td>Manual control occasions insecticides against leaf cutting ants</td>
</tr>
</tbody>
</table>

Data collection for this study in year 2014
In each plot two trees of two different clones were sampled (fruits, leaves and roots) and soil samples were taken at 70 cm distance from the trunk.
Sampling strategy

- 10 medium aged leaves per tree
- 2-3 mature fruits per tree
- Composite soil sample (0-10 cm)
- Composite soil sample (10-25 cm)
Trunk diameters

- ICS 1 clones were bigger than TSH 565.
- Trees in monocultures were bigger than the ones in AF.
Parameters analysed in soils and plants

Soil

<table>
<thead>
<tr>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil pH (CaCl₂)</td>
</tr>
<tr>
<td>Texture</td>
</tr>
<tr>
<td>Organic Matter (Walkley Black)</td>
</tr>
<tr>
<td>Available P (Olsen P)</td>
</tr>
<tr>
<td>K disponible</td>
</tr>
<tr>
<td>Cd, Fe, Zn disponible (AAAC-EDTA)</td>
</tr>
<tr>
<td>Cd, Zn total (Aqua Regia)</td>
</tr>
<tr>
<td>DGT disponible Cd, Zn</td>
</tr>
</tbody>
</table>

Leaves, pod husks and beans

- Total Cd, Fe, Zn

Roots

- Mycorrhizal abundance

Fertilizers / Pesticides / River water

- Total Cd

DGT: diffusive gradients in thin films
Cd levels in plants and soil

<table>
<thead>
<tr>
<th></th>
<th>Cd (mg kg(^{-1})) total</th>
<th>Cd (mg kg(^{-1})) available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaves</td>
<td>0.9 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>Pod husks</td>
<td>0.5 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>Beans</td>
<td>0.2 ± 0.02</td>
<td></td>
</tr>
<tr>
<td>Top Soil</td>
<td>1.2 ± 0.05</td>
<td>0.3 ± 0.01</td>
</tr>
<tr>
<td>Sub Soil</td>
<td>1.0 ± 0.06</td>
<td>0.2 ± 0.01</td>
</tr>
</tbody>
</table>

- Cd levels in cocoa beans are in an acceptable range.
- Cd levels in soils are rather high. Above total Cd levels of 1.1 mg kg\(^{-1}\) soils are generally considered as contaminated soils.
- Higher concentrations were found in the top soil than in the sub soil.

Maximum tolerated Cd levels in the EU in wheat/rice: 0.2 mg kg\(^{-1}\)
Chocolate (exp): 0.3 – 0.8 mg kg\(^{-1}\)

Worldwide average total soil Cd concentration: 0.2 mg kg\(^{-1}\)
Factors influencing Cd in leaves for Cd in beans we couldn’t find

Multiple linear effects model with forward variable selection:

Leaf Cd ~ System + Clon + Cd_{DGT} + Organic matter

R^2: 0.59

P-Values:
System : 0.01
Clon : 0.01
Cd_{DGT} : < 0.001
Organic matter: 0.005

System: Monocultures higher concentrations than agroforestry systems
Clon: ICS 1 has higher Cd contents than TSH 565
Cd_{DGT}: Positive relationship
Organic matter: Negative relationship
Conclusions and outlook Cd

✧ The total Cd levels in soils were high, close to the threshold of soils considered as contaminated.

✧ The bean Cd concentrations were intermediate.

✧ Only a very small part of variance in bean and husk Cd was explained by studied factors.

✧ Factors explaining differences in leaf content: system, clone, Cd_{DGT} and organic mater

Outlook:
• Analyse more clones (root and graft)
• Cd allocation in older cacao trees
• Competition for Cd uptake by AF-trees
• In soils with lower pH: test liming and soil organic matter increase

www.fibl.org
Study published in Science of the Total Environment 2016

Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management

A. Gramlich\(^1\), S. Tandy\(^1\), C. Andres\(^2\), J. Chincheros\(^3\), L. Armengot\(^2\), M. Schneider\(^2\), R. Schulin\(^1\)

\(^1\)ETH Zurich, Institute of Terrestrial Ecosystems, Zurich, CH
\(^2\)Research Institute of Organic Agriculture (FiBL), Frick, CH
\(^3\)Universidad Mayor de San Andrés, Laboratorio de Calidad Ambiental, La Paz Bolivia

www.fibl.org
Acknowledgments

Funding partners

Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera
Confederazione svizra

Swiss Agency for Development and Cooperation SDC

Bolivian partners

Thank you for your attention