The Genomic Selection of *Theobroma cacao*: a new strategy of marker assisted selection to improve breeding efficiency and predict useful traits in new populations

F. Ribeyre (1), O. Sounigo (2), X. Argout (2), C. Cilas (1), B. Efombagn (3), M. Denis (1), J.M. Bouvet (4), O. Fouet (1), C. Lanaud (1)

(1) CIRAD, France
(2) CIRAD, Colombia
(3) IRAD, Cameroon
(4) CIRAD, Madagascar
Why Genomic Selection for cocoa?

Markers assisted selection: Markers significantly associated with trait

Genomic selection: all genetic markers simultaneously (Meuwissen et al. 2001)

A solution for the prediction of performance in complex traits?

Accuracy of Genomic selection depends on:

- linkage disequilibrium between markers
- the heritability of the trait
- the size of the training population
- the relationships between the training sets and the test sets
- the number of markers
- the statistical method to estimate the GEBV
- the distribution of underlying QTL effects
- the genotype x environment interaction...
What is Genomic Selection?

• Training population: genotyped and phenotyped
 model
 GEBV: sum of all markers effects by regressing phenotypic values on all available markers.

• test population: genotyped
 predictions
Objectives

Two traits

- Evaluate 2 models
- Evaluate the predictive abilities of models

Heritable

Less heritable

Phytophthora megakarya
Data to test genomic selection

A cacao farm plot in Cameroon with a mixture of hybrids

Histogram of the average weight of a bean - 232 trees

Histogram of the percentage of rotten pods - 287 trees during 3 years

<table>
<thead>
<tr>
<th>Cocoa trees</th>
<th>Marker 1</th>
<th>…</th>
<th>…</th>
<th>…</th>
<th>Marker 50224</th>
<th>Average weight of a bean</th>
<th>% of rotten pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree 287</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The statistical challenge

Best linear unbiased prediction model based on markers (G-BLUP)
Mixed model that suppose a normal distribution of markers effects with same variance

A large number of QTL with small effects

genetic values are modeled as \(u \sim N(0, U\sigma^2_u) \),
where \(U \) is the realized relationship matrix calculated from the markers
and \(\sigma^2_u \) is the genetic variance pertaining to model

Bayesian lasso model (BL)
We suppose a double exponential distribution of markers effects.

A lot of markers with effects near 0 and some with moderate to large effects

\(m \sim N(0, T\sigma^2) \)
\(T = \text{diag}(\tau_1^2, ..., \tau_j^2, ..., \tau_p^2) \)
Results using R-package synbreed

(Wimmer et al., 2012)

Percentage of rotten pods

Average weight of a bean

R = 0.90
Evaluate models: cross validation

% rotten
Predictive ability = 0.42 (GBLUP 2 folds)
= 0.37 (BL 2 folds)

Weight
Predictive ability = 0.59 (GBLUP 2 folds)
= 0.58 (BL 2 folds)
Evaluate models

<table>
<thead>
<tr>
<th></th>
<th>Observed mean of 10% higher predicted</th>
<th>Observed mean of 10% lower predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of rotten pods</td>
<td>67</td>
<td>48</td>
</tr>
<tr>
<td>Average weight of a bean</td>
<td>1.6</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Good differentiation
Conclusion

• Good predictive ability of models

• A promising method to improve these cocoa traits

• predict tolerant cocoa trees to disease only present in another environment?