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Abstract 20 

Fermentation is a very important postharvest process where many processing properties and 21 

sensory attributes are developed. However, cocoa fermentation still remains empirical due to its 22 

complex mechanisms that evolved many microbiological changes. Some equipment such as 23 

HPLC, GC-MS, and near infrared spectroscopy may be useful to study cocoa fermentation, 24 

however they are relatively expensive, timing consuming and inaccessible to cocoa farmers. In 25 

this study, a machine learning based electronic nose system was developed to determine the 26 

fermentation time of cocoa beans. The system achieved a misclassification rate as low as 14.2 % 27 

with relatively show time and low cost.  28 

 29 

Keyword: cocoa; fermentation; electronic nose; machine learning 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 



1.Introduction 40 

Chocolate is one of the most profitable merchandise of the global confectionary industry. 41 

The chocolate market worth 98.3 billion dollars in 2016 and the retail sale of chocolate in US 42 

alone is estimated to be 22.4 billion for 2017 (Duncan 2017). Cocoa bean (Theobroma cacao L.) 43 

is the major raw material in chocolate products. Globally, the production of cocoa bean was 44 

4.031 million tons in 2016. Consumers are willing to pay more money for better quality 45 

chocolate, which creates price gap between mediocre chocolate and fine making chocolate. In 46 

most cases, the quality of cocoa bean is pivotal to the value of the final the chocolate products 47 

(Afoakwa et al., 2008).  48 

The quality of cocoa bean is influenced by its variety, soil, climate, crop management and 49 

mainly by post-harvest processing (De Brito et al., 2001). Fermentation is a prerequisite for the 50 

development of cocoa flavor precursors and better processing properties (Hue et al., 2016). 51 

During there are many microbial, physiochemical and enzymatic effects that greatly change the 52 

properties of cocoa. Some researchers (Biehl et al., 1982; Biehl et al., 1985) have reported that 53 

the PH of cocoa beans can influence the formation of flavor precursors by either inhibiting or 54 

stimulating the activities of proteolytic enzymes such as endoprotease (Biehl et al., 1982; Biehl 55 

et al., 1985). Those proteolytic enzymes transform seed proteins into precursors for Maillard 56 

reaction triggered at roasting process (Biehl et al., 1993).  57 

Cocoa fermentation still remains empirical even it has been studied for more than one 58 

hundred years. Fermentation conditions and fresh bean qualities are very difficult to control 59 

which give rise to beans of inconsistent fermentation quality, which obliges processors 60 

continuously to make changes of their formulations (Zhao et al., 2015). The formation of flavor 61 

compounds during fermentation involves a successional growth of various species of yeasts, 62 



lactic acid bacteria (LAB), acetic acid bacteria (AAB) and, possibly, species of Bacillus, other 63 

bacteria and filamentous fungi (De Vuyst et al., 2010). In the beginning of fermentation, yeasts 64 

transform carbohydrates in cocoa pulp into ethanol and carbon dioxide. In the meantime, LAB 65 

converts citric acid and other remaining carbohydrates in the pulp to lactic acid, slightly 66 

increasing the pH of cocoa beans (Lefeber et al., 2012). In the following stage, AAB oxidizes the 67 

produced ethanol into acetic acid (Camu et al., 2007; Sandhya et al., 2016). The microbial 68 

oxidation of ethanol into acetic acid increases the temperature, which kill the seed embryo and 69 

diffusing acetic acid inside the beans. The diffused acetic acid disintegrates the cellular 70 

membranes inside cocoa beans and triggers enzymatic conversions of substrates in the cotyledon 71 

to develop characteristic flavor precursors and color of fully fermented cocoa beans (Thompson 72 

et al., 2013). In the last stage, various species of Bacillus grow when the pH of the cocoa bean 73 

becomes less acidic and the temperature increases to 40– 50 °C due to the oxidative metabolism 74 

of ethanol.  75 

Currently, the standard methods for determining the fermentation degree of cocoa bean is 76 

cut test. This method consists in longitudinally cutting and counting the proportion of purple and 77 

brown beans on a representative dried sample of 300 beans (Wood and Lass 2008). However, cut 78 

test is relatively time consuming and the determination is based on human observations which 79 

are inevitable inconsistent and bias. Sensory tests are alternative methods for cut test, however, it 80 

is also time consuming and required a well-trained sensory panel. Some chocolate manufacturers 81 

and researchers have applied techniques such as gas chromatography-Mass spectrometry (GC-82 

MS) (Grün et al., 2008; Caligiani et al., 2007), High-performance liquid chromatography 83 

(HPLC) (Pätzold et al., 2006; Tomlins et al., 1990; Sandhya et al., 2016) and near infrared 84 

spectroscopy (Hue et al., 2014) to determining cocoa fermentation degree by mapping the 85 



profiles of compounds such as ammonia nitrogen, free amino acids, and volatile compounds. 86 

Those methods were reported to be useful, however, those technologies are expensive and 87 

difficult to conduct.  88 

Electronic nose is an array of many gas sensor, mimicking the discrimination of the 89 

mammalian olfactory system for smells (Persaud and Dodd 1982). Each gas sensor gives a 90 

fingerprint response to given odors, and the response pattern of gas sensor can be recognized by 91 

certain algorithms and then performs odor identification and discrimination (Arshak et al., 2004). 92 

E-nose has been applied to access the qualities of some food materials include sausages (Eklöv et 93 

al., 1998), vegetable oils (Hai and Wang 2006), milk (Capone et al., 2001), meats (Rajamäki et 94 

al., 2006) and fruits (Saevels et al., 2004). In addition, the applications of e-nose in food quality 95 

evaluation, discrimination, and control are also very broad. However, the applications of e-nose 96 

in cocoa quality and processing controls were barely reported. Therefore, it is potentially useful 97 

to develop a universal, affordable, and fast measuring methods for cocoa bean quality 98 

determination.  99 

Artificial neural network (ANN) is computational model used in machine learning, 100 

mimicking the cognitive processes of human. Like the human cerebral cortex, a ANN consist of 101 

layers of artificial nodes. In the basic model of the ANN, nodes are separated into different layers 102 

and connections are built between nodes that are in adjacent layers. The weight is assigned to 103 

connection between two nodes. each node calculates all the weighted inputs from connected 104 

nodes in the previous layers and processed them by transfer function. The results from the 105 

function are transferred to the connected nodes in the next layer. The effects of the synapses are 106 

represented by connection weights that modulate the effect of the associated input signals, and 107 

the nonlinear characteristic exhibited by neurons is represented by a transfer function. The 108 



learning capability of an artificial neuron is achieved by adjusting the weights in accordance to 109 

the chosen learning algorithm (Abraham 2005).  110 

In this study, the fermentation of cocoa (Theobroma cacao L.) beans was monitor by self-111 

built electronic nose system. The responses of the e-nose were processed by artificial neural 112 

network. The temperature and PH of cocoa beans during fermentation were recorded and cut 113 

tests were conducted as reference.      114 

2. Materials & methods 115 

2.1 Cocoa fermentation 116 

75 kg fresh cocoa beans (Theobroma cacao L.) were evenly distributed to 3 Styrofoam 117 

coolers (60 × 30 × 30 cm). The three coolers were placed adjacent to each other in a fermentation 118 

room with ambient temperatures varied from 20-30 °C. The cocoa beans were turned and mixed 119 

every two days. 120 

2.2 PH, temperature measurements  121 

Temperature, PH measurements and cut tests were taken every day (Days 0-7) after the 122 

first electronic nose reading was obtained. A thermometer (model EW-94469-40, Cole-Parmer, 123 

Vernon Hills, IL) was inserted at three different depths (top, middle and bottom) in each of the 124 

three Styrofoam coolers in order to obtain three replicates of readings for each treatment. PH 125 

measurements were carried out using an Oakton Acorn series PH meter (model WD-35613-70, 126 

Oakton, IL). the testa was separated from the cotyledons and placed in separate ceramic mortars. 127 

10mL of distilled water was added to each and then the mixture was grounded using a ceramic 128 

pestle.  129 

 130 



2.3 E-nose system 131 

The design of the e-nose is based on Tan and Kerr (2018)’s work with some upgrade. The 132 

diagram of the e-nose system is shown in Fig. 1. The system consisted of five major components, 133 

including a micro pump (NMP830, KNF, Trenton, NJ), a 3-way solenoid valve (225T031, NR, 134 

Caldwell, NJ), an Arduino board microcontroller (Uno, Arduino), e-nose (gas sensors and 135 

chamber), and data acquisition system. The e-nose chamber was built from a 10cm χ 10cm χ 5cm 136 

nylon box with a 1.5cm thick Teflon top. Sensors alone with their socket were inserted into the 137 

top with sensor head inside the chamber. The e-nose had nine gas sensors from Figaro USA, INC 138 

(Arlington Heights, IL). The specification of each sensor was summarized in Table 1. The pump 139 

is always open during sampling (30s) and cleaning (100s) and closed when e-nose is reacting 140 

with gas. The valve alternated its direction to switch the e-nose from sampling model to cleaning 141 

model.  142 

The signals (output voltage as a function of time) were collected by three data acquisition 143 

boards (Model NI9219, National Instruments, Austin, TX). A program was developed using 144 

LabView software (Version 2015, National Instruments, Austin, TX) to collect data from the 145 

DAQ. Three characters (relative peak, relaxation time, and rising time) of the responses of each 146 

gas sensor were extracted. The ‘relative peak’ was defined as the output peak value minus the 147 

baseline values of each sensor. The ‘relaxation time’ was defined as the time that the output 148 

voltage decreased from the peak value to 80% of its relative peak value. The ‘rising time’ was 149 

defined as the time needed before the responses of each sensor reached its relative peak. 150 

2.4 Artificial Neural Network (ANN) setup 151 

The three characters of each sensor were scaled to 0-1 before serving as training data. 152 

ANN training was conducted by neural Matlab network toolbox (R2017a, MathWorks, Natick, 153 



MA).  There were 60 repetitions at each day of fermentation, of which 50 % repetitions were 154 

used for training the ANNs while the rest were used for validation. The scaled target data were 0, 155 

0.13, 0.28, 0.42, 0.57, 0.71, 0.85 and 1, representing fermentation times of 0, 1,2,3,4,5,6 7 days 156 

respectively. At the beginning of training, initial weights between 0 to 1 were randomly 157 

assigned. Training was done using a backpropagation function, which updates weight and bias 158 

values according to the Levenberg-Marquardt optimization. Settings for the routine are shown in 159 

Table 2. Hyperbolic tangent sigmoid (“tansig”) functions were used for hidden layers and output 160 

layers 161 

2.8 Statistical methods 162 

All results presented as the mean and superscript letters which indicated significant 163 

differences amongst treatments at the 95% level of confidence by Tukey’s HSD. The results 164 

were compared by one-way ANOVA using JMP (Pro 13, SAS Institute Inc., Cary NC).  165 

3. Results and discussion 166 

3.1 Temperature and PH variation during cocoa fermentation 167 

The trendlines in Fig. 1 and Fig. 2 shown the change of temperature and PH respectively 168 

during fermentation. Generally, in the fermentation process, the temperature varied between 28 169 

to 50 °C, and the peak temperature was observed in the fourth day of fermentation when 170 

microbial action on producing ethanol and acids was about to over. The temperature of cocoa 171 

beans changes in the fermentation process was due to heat generated activities of 172 

microorganisms which transformed the substances in pulp into alcohol, carbon dioxide, organic 173 

acid and other volatiles.  174 



The PH in testa increased from 3.6-4.5 during fermentation, however, the PH in 175 

cotyledon during drastically from 6.3 to 4.5. The observations were due to the organic acids 176 

including acetic, oxalic, phosphoric, succinic, and malic acids produced by several yeasts, 177 

penetrating the testa and gradually absorbed by the cotyledon.  178 

3.2 Fermentation time determination by ANN 179 

Table 3 shown the performance of the trained ANN. 14.2% overall misclassification rate 180 

was achieved. The ANN misclassified 33.3% of the verification samples from the first 181 

fermentation day. This was because cocoa fermentation didn’t produce enough volatiles to reach 182 

the thresholding sensitivity of some gas sensor in the first day. In addition, we cocoa bean 183 

generated high content of water vapor in the headspace, camouflaging the volatiles. In addition, 184 

ANN may scarify the accuracy for samples from the first day in order to achieve high overall 185 

performance.   186 

4. Conclusion 187 

The ANN based e-nose system was proved to be successful in determining the 188 

fermentation degree of cocoa bean. Compared to traditional methods, the proposed method is 189 

much cheaper and fast.  However, to make more powerful system that works for other cocoa 190 

beans, a massive data library need to be established to provide enough number of training data.  191 

 192 
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Fig. 1: The diagram of the e-nose system for cocoa fermentation 
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Fig. 2: The mean Temperature for the cocoa beans in the process of fermentation  
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Fig. 3: The mean pH for the cocoa testa and cotyledon as a function of time in the fermentation  
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Table 1: features and specification of the gas sensors being used for e-nose system 

Sensors Features & specification 

TGS821 Hydrogen 

TGS 826 High sensitivity to ammonia and ethanol 

TGS813 High sensitivity to methane, propane, and 

butane 

TGS2602 High sensitivity to VOCs and odorous 

gases 

TGS822  High sensitivity organic solvent vapors 

such as ethanol 

TGS2610  High sensitivity to LP and its component 

gases (e.g. propane and butane) 

TGS2620  High sensitivity to alcohol and organic 

solvent vapors 

TGS830 R11, R113, other halocarbons 

TGS823 High sensitivity to organic solvent vapors 

such as ethanol 

 

 

Table 2: Initial settings for training artificial neural network (ANN)  

 

Mu Mu-dec Mu-inc Iterations Validation check 

0.001 0.1 0.1 1000 5000 

 

 

 

 

 

 



Table 3: Performance of ANN for classify the fermentation time of cocoa  

Fermentation time (day) Misclassification rate (%) 
0 33.3 
1 16.7 
2 6.7 
3 13.3 
4 13.3 
5 16.7 
6 6.7 
7 6.7 

Overall 14.2 
 

 

 

 

 


	T5.34.SENSING COCOA (THEOBROMA CACAO L.) BEANS FERMENTATION BY ELECTRONIC NOSE SYSTEM
	T5.34. ANNEX1.FIGURE
	T5.34. ANNEX 2.Tables (1)

